Fine-Tune Config Generator
Generate production-ready configurations for LoRA, QLoRA, PEFT, and more
Select Training Method
Training Parameters
LoRA Configuration
Higher = more parameters
Scaling factor (usually 2×r)
Regularization
Generated Configuration
{
"model_name_or_path": "meta-llama/Llama-2-7b-hf",
"task_type": "CAUSAL_LM",
"lora_config": {
"r": 8,
"lora_alpha": 16,
"lora_dropout": 0.05,
"target_modules": [
"q_proj",
"v_proj",
"k_proj",
"o_proj"
],
"bias": "none",
"task_type": "CAUSAL_LM"
},
"training_arguments": {
"output_dir": "./lora-output",
"num_train_epochs": 3,
"per_device_train_batch_size": 4,
"gradient_accumulation_steps": 4,
"learning_rate": 0.0002,
"fp16": true,
"logging_steps": 10,
"save_strategy": "epoch",
"optim": "adamw_torch",
"warmup_ratio": 0.03,
"lr_scheduler_type": "cosine",
"max_seq_length": 512
}
}LoRA
Low-Rank Adaptation for efficient fine-tuning
Best For:
- • Consumer GPUs (8-16GB)
- • Fast iteration cycles
- • Task-specific adaptation
Quick Tips
LoRA Rank: Start with r=8 for most tasks. Increase to 16-32 for complex adaptations.
Learning Rate: 2e-4 to 5e-4 works well for most LoRA training.
Batch Size: Use gradient accumulation if your GPU can't fit larger batches.
Epochs: 3-5 epochs usually sufficient. Monitor validation loss to avoid overfitting.
Estimated VRAM
7B Model:
~12-16GB VRAM required